Stochastic Modeling at Multiple Timescales

Hongyu Wu, Ph.D.
Hongyu.Wu@nrel.gov
FERC Technical Conference
6/24/2014

Outline

- Terminology check and project overview
- Multiple timescale modeling framework
 - Stochastic model
 - Robust model
- Probabilistic Forecasts
- Future work

Terminology Check

Multi scenariobased, expected cost minimized

Constraint satisfied by predetermined probability level

Stochastic SCUC/ED

L. Wu et al., 2007; Bouffard et al., 2008; Morales et al., 2009; Ruiz et al., 2009; Meibom et al., 2011

Chance Constrained SCUC/ED

Ozturk et al., 2004; Q. Wang et al., 2012; H. Wu et al., 2014 Single scenario-based

Robust SCUC/ED

Immunity against all realization, worst case cost minimized

Birtsimas et al., 2013; Zhao et al., 2013 Scenarios define exogenous deterministic constraints

Interval SCUC/ED

Upper- and lower-bound feasible, not expected cost minimized

J. Wang et al., 2007; Y. Wang et al., 2011; L. Wu et al. 2012 Dynamic Reserve

Ortega-Vazquez et al, 2007; Matos et al., 2011; Ela et al., 2011 (summary); Ibanez et al., 2013

How to prepare for uncertainty?

Project Goals

- renewable resource and load forecasting error characteristics representing probabilistic forecasts with correlations across time, space, and each other (e.g., load and solar)
- Stochastic model, operating at multiple time resolutions and time horizons
 - Merge with DASCUC, RTSCUC, RTSCED
- Robust model, operating at multiple time resolutions and time horizons
 - Merge with DASCUC, RTSCUC, RTSCED
- Understanding of how each strategy (along with intelligent dynamic reserve) impacts the system in terms of :
 - Production costs
 - Imbalance (improves reliability)
 - Incentive structure, i.e., how resources are paid to provide additional flexibility
 - Computation time

Multiple Timescale Stochastic Model

Multiple Timescale Robust Model

COO for Stochastic SCUC (Cont'd)

Scenario based (SB) method in terms of MCS is one of the major solutions of Stochastic SCUC

SB method Characteristics

- The accuracy of MCS is at best $1/(N)^{1/2}$
- A non-convex, NP-hard SCUC in each scenario
- Hard coupling constraints link all scenarios

Multiplicative Impacts!

Drawbacks: Computationally infeasible when considering a large number of scenarios

COO for Stochastic SCUC (Cont'd)

Goal: finding good enough solutions with high probability instead of searching the best solution with certainty.

Two tenets:

- Ordinal Comparison
 Goal Softening
 Intuitively reasonable, mathematically proven*
- Advantages
 - Saves computation efforts by at least one order of magnitude
 - Convergence rate of COO is exponential, which is much faster than O(1/(N)1/2) of MCS

^{*} Y. C. Ho, Q. Zhao, and Q. Jia, Ordinal optimization: Soft optimization for hard problems, New York: Springer, 2007.

COO for Stochastic SCUC (Cont'd)

Generalized S-SCUC $\min_{\mathbf{I}, \mathbf{P}^{s}} J(\mathbf{I}, \mathbf{P}^{s}) = \min_{\mathbf{I}, \mathbf{P}^{s}} \lim_{NS \to \infty} \sum_{s=1}^{NS} \mu_{s} \cdot L(\mathbf{I}, \mathbf{P}^{s}, \xi^{s})$ $s. t. \quad h(\mathbf{I}, \mathbf{P}^{s}) \le 0,$

 $I \in \Theta$,

Alignment Probability Alignment $G(\Theta_f)$ Θ_f $Prob(|G(\Theta_f) \cap S| \ge k) \ge a$

Feasibility Model $\sum_{i \in E_{1,t}} P_i^{\max} + \sum_{w \in E_{2,t}} P_{w,t}^{f,\max} \ge D_t^s, \forall t, \forall s$ $\sum_{i \in E_{1,t}} P_i^{\min} \le D_t^s, \forall t, \forall s$ $\sum_{i \in E_{1,t}} (a_{l,i_n} - a_{l,i_k}) \overline{P}_{i_n} + \sum_{n=k+1}^{N} (a_{l,i_n} - a_{l,i_k}) \underline{P}_{i_n} + a_{l,i_k} D_t^s \le B_{l,t}, \forall l, \forall t, \forall s$

$$\operatorname{Prob}(|G(\Theta_{f}) \cap S| \geq k)$$

$$= \sum_{j=k}^{\min(g,S_{N})} \sum_{i=0}^{S_{N}-j} \frac{\binom{g}{j} \binom{M-g}{S_{N}-i-j}}{\binom{M}{S_{N}-i}} \binom{S_{N}}{i} q^{S_{N}-i} (1-q)^{i} \geq a$$

H. Wu and M. Shahidehpour, "Stochastic SCUC solution with variable wind energy using constrained ordinal optimization," IEEE Trans. Sustainable Energy, vol. 5, no. 2, pp:379-388, April 2014.

COO for Stochastic SCUC

[1] H. Wu, X. Guan, et al, "A systematic method for constructing feasible solution to SCUC problem with analytical feasibility conditions [J]," IEEE Trans. on Power Systems, vol. 27, no. 1, pp.526-534, Feb. 2012.

Forecast Errors of different time scales

J Zhang, BM Hodge, A. Florita, Joint probability distribution and correlation analysis of wind and solar power forecast errors in WWSIS, Journal of Energy Engineering, 2014

Correlation Analysis of Different Timescales

Pearson's correlation coefficients¹

	Day-Ahead			Four-Hour-Ahead			One-Hour-Ahead		
	Year	Jan.	July	Year	Jan.	July	Year	Jan.	July
WWSIS*	-0.19	-0.21	-0.30	-0.34	-0.18	-0.63	-0.13	-0.06	-0.34

- Wind and solar generation forecast errors are inversely correlated
- A larger inverse correlation would be preferable, as a large positive wind forecasting error would be more likely to be offset by a negative solar forecasting error
- Our future work will investigate the impact of the inverse correlation on the reliability and efficiency of each model

^{*} WWSIS: Western Wind and Solar Integration Study

^{1.} J Zhang, BM Hodge, A. Florita, Joint probability distribution and correlation analysis of wind and solar power forecast errors in WWSIS, Journal of Energy Engineering, 2014

Wind Generation Forecast

Probabilistic wind generation forecasts for the next 6 hours with 15-minute time resolution

J Zhang, A Florita, BM Hodge, et al., Ramp forecasting performance from improved short-term wind power forecasting, IDETC/CIE 2014

Load Forecast

Future Work

- Direct comparison of SSCUC, RoSCUC, and Dynamic OR in terms of reliability (imbalance), efficiency (prod. cost), and incentive structure (profit)
- Integration into market designs
 - New advanced models schedule operating reserve inherently within model, without dual value for reserve constraint
 - DAM SCUC and Reliability SCUC interaction and evolution
 - Is it plausible for the ISO to receive probabilistic bids from market participants?
- Stochastic Energy (vs. Power) scheduling

Questions

Hongyu.Wu@nrel.gov

Erik.Ela@nrel.gov

Anthony.Florita@nrel.gov

Bri.Mathias.Hodge@nrel.gov

Jie.Zhang@nrel.gov

Ibrahim.Krad@nrel.gov

http://www.nrel.gov/electricity/transmission